首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19154篇
  免费   449篇
  国内免费   407篇
工业技术   20010篇
  2024年   5篇
  2023年   363篇
  2022年   525篇
  2021年   557篇
  2020年   549篇
  2019年   512篇
  2018年   519篇
  2017年   600篇
  2016年   577篇
  2015年   658篇
  2014年   1079篇
  2013年   1517篇
  2012年   890篇
  2011年   1667篇
  2010年   1155篇
  2009年   1206篇
  2008年   1179篇
  2007年   1049篇
  2006年   818篇
  2005年   748篇
  2004年   640篇
  2003年   521篇
  2002年   421篇
  2001年   288篇
  2000年   284篇
  1999年   278篇
  1998年   291篇
  1997年   232篇
  1996年   186篇
  1995年   154篇
  1994年   117篇
  1993年   80篇
  1992年   61篇
  1991年   59篇
  1990年   44篇
  1989年   39篇
  1988年   32篇
  1987年   20篇
  1986年   15篇
  1985年   20篇
  1984年   11篇
  1983年   10篇
  1982年   16篇
  1981年   11篇
  1980年   5篇
  1974年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
《Ceramics International》2020,46(5):6174-6181
The ZrO2 alloying effect is widely used to optimize the thermo-mechanical properties of potential thermal barrier coatings. In this study, dense x mol% ZrO2-Gd3NbO7 with C2221 space group were manufactured via a solid-state reaction. The crystalline structure was determined through X-ray diffraction and Raman spectroscopy, when the surface morphology was observed by scanning electron microscopy. ZrO2-Gd3NbO7 had identical orthorhombic crystal structures, and there was no second phase. The crystalline structure of ZrO2-Gd3NbO7 shrunk with the increasing ZrO2 content as indicated by XRD and Raman results. The heat capacity and thermal diffusivity of ZrO2-Gd3NbO7 were 0.31–0.43 J g−1 K−1 (25–900 °C) and 0.25–0.70 mm2/s (25–900 °C), respectively. It was found that ZrO2-Gd3NbO7 had much lower thermal conductivity (1.21–1.82 W m−1 K−1, 25–900 °C) than YSZ (2.50–3.00 W m−1 K−1) and La2Zr2O7 (1.50–2.00 W m−1 K−1). The thermal expansion coefficients (TECs) were higher than 10.60 × 10−6 K−1 (1200 °C), which were better than that of YSZ (10.00 × 10−6 K−1) and La2Zr2O7 (9.00 × 10−6 K−1). The mechanical properties of Gd3NbO7 change little with the increasing ZrO2 content, Vickers hardness was about 10 GPa, and Young's modulus was about 190 GPa, which was lower than YSZ (240 GPa). Compared with previous work about alloying effects, much lower thermal conductivity was obtained. Due to the high melting point, high hardness, low Young's modulus, ultralow thermal conductivity and high TECs, it is believed that ZrO2-Gd3NbO7 is promising TBCs candidate.  相似文献   
102.
《Ceramics International》2020,46(4):4771-4777
The Li–Al–Si glass-ceramics were prepared by conventional glass-ceramic fabrication method. The influences of Na2O content on the sintering property, microstructure, and coefficient of thermal expansion were investigated. The results show that the coefficient of thermal expansion of LAS glass-ceramics can be tailored to match that of silicon by the addition of Na2O content. Na2O has a remarkable influence on the crystallinity of Li–Al–Si glass-ceramic. The coefficient of thermal expansion of Li–Al–Si glass-ceramic is thus tunable between that of glass phase and crystal phase. The Si–O bond length change in stretch vibration modes introduced by Na2O also contributes to the variation of coefficient of thermal expansion of the Li–Al–Si glass-ceramics. The coefficient of thermal expansion of the Li–Al–Si glass-ceramic with 1.5 wt% Na2O addition is about +3.34 ppm/°C at 350 °C and shows a good compatibility to that of silicon in a wide temperature range, which makes it a promising candidate for anodic bondable low temperature co-fired ceramic substrate applications.  相似文献   
103.
The boron nitride (BN) interphase of silicon nitride (Si3N4) fiber-reinforced BN matrix (Si3N4f/BN) composites was prepared by chemical vapor deposition (CVD) of liquid borazine, and the microstructure, growth kinetics and crystallinity of the BN coating were examined. The effects of coating thickness on the mechanical strength and fiber/matrix interfacial bonding strength of the composites were then investigated. The CVD BN coating plays a key role in weakening the interfacial bonding condition that improves the mechanical properties of the composites. The layering structure of the BN coating promotes crack propagation within the coating, which leads to a variety of toughening mechanisms including crack deflection, fiber bridging and fiber pull out. Single-fiber push-out experiments were performed to quantify the fiber/matrix bonding strength with different coating thicknesses. The physical bonding strength due to thermal mismatch was discussed.  相似文献   
104.
We describe the operation of a bench-scale stationary hydrogen energy system comprising photovoltaic (PV) panels, a water electrolyzer (Ely), metal hydride tanks fabricated using an AB-type TiFe-based alloy (TiFe-based tanks), fuel cells (FC), and batteries under various weather conditions. The FC and TiFe-based tanks are thermally coupled to transfer heat when necessary to stabilize the output power, and automatic control is provided via a building energy management system (BEMS), which plans the operating schedule up to 48 h in advance based on the weather forecast and expected demands of the building. Experiments were conducted for 24-h operation on a fine day, 48-h operations on partly cloudy and partly cloudy days, and 48-h operations on partly cloudy and rainy days in order to verify the system. Each operation was performed as planned. Our results show that it is possible to operate the hydrogen system all year round without external heat sources.  相似文献   
105.
《Ceramics International》2020,46(3):2915-2922
The growth of thermally grown oxide (TGO) is a significant factor affecting the failure mechanism of thermal barrier coatings (TBCs) during cyclic high temperature service. In this work, a complicated finite element model with two semicircles reflecting the undulation of TGO interfaces was proposed, and four representative shapes of TGO interfaces were selected. There are mainly two methods to simulate TGO growth under high temperature, and each method was achieved by implementation of user subroutines in finite element method. A total of 100 thermal cycle loads were applied to the TBCs continuously. The stress evolution in the layers of Top Ceramic Coating (TC) and Bond Coating (BC) at the end of each thermal cycle load was obtained, the influence of TGO growth on stress evolution was analyzed, the differences between two methods of TGO growth were discussed. The results show that under TGO growth simulated by the first method, the stress distribution in the y direction does not change in both TC and BC layer, and the maximum stress decreases a lot in TC layer but nearly remains the same in BC. When the growth of TGO was simulated by the second method, stress evolution is complex and undergoes up to five stages with a small undulation or convex of TGO interfaces. Stress evolution in BC layer remains as the same as in the first method. Moreover, the maximum stress increases continually in BC layer. The comparison of these two simulation method would help to study the failure of TBCs caused by TGO growth.  相似文献   
106.
Abstract

The evolution of active groups at low temperature was examined using Chinese lignite by infrared technology and X-ray photoelectron spectroscopy (XPS). The results showed that the hydroxyl, aliphatic ether, methylene, and methyl groups played important roles in the low-temperature oxidation of lignite below 200?°C. Carbonyl and carboxyl groups were important intermediates. Thus, a multi-step evolution mechanism involving the hydroxyl, aliphatic ether groups, and alkane was reasoned to describe the low-temperature oxidation of lignite. In addition, according to the oxidation kinetics experiment and the evolution laws of the active groups, the ratios of the reaction lines were determined considering the accuracy of thermal effects. The thermal effects and the heat release intensities of each temperature interval were obtained based on the evolution mechanism and the reaction ratios. The shortest spontaneous combustion period of lignite was calculated and compared with the experimental value, which proved that the reasoned evolution mechanism of the active groups and the calculations of the thermal effects were reliable.  相似文献   
107.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   
108.
《Ceramics International》2020,46(12):19835-19842
The present work focused on the effect of Y2O3 co-doping on the phase composition, microstructure, ionic conductivity and thermal shock resistance of 8 mol% MgO stabilized ZrO2 (Mg-PSZ) electrolyte ceramics for high temperature applications. The addition of Y2O3 could promote the process of monoclinic-to-cubic/tetragonal phase transformation and became the metastable phase at room temperature. Meanwhile, the grain size of Mg-PSZ decreased. It was demonstrated that an appreciable increase in the ionic conductivity and compressive strength occurred on substituting MgO with Y2O3 in the Mg-PSZ electrolyte ceramics across the measured temperature range. Moreover, the Y2O3 addition could restrain the adverse effect of the cyclic thermal shock on the ionic conductivity and compressive strength of Mg-PSZ. The main reason was that the increase of the amount of monoclinic phase caused by cubic/tetragonal-to-monoclinic phase transformation by the cyclic thermal shock was restrained after the Y2O3 addition.  相似文献   
109.
Composites of 8 mol.% yttria-stabilized zirconia (8YSZ) with graphene nanoplatelets (GNP) have been pointed as alternative interconnectors in SOFC due to their mixed ionic-electronic conduction. Here we show that GNP addition provides rising crack-resistance behavior, with long crack toughness up to 78% higher than that of 8YSZ, also improving its thermal conductivity (up to 6 times for the in-plane direction). Toughness versus crack length is measured for 7 and 11 vol.% of GNP using single edge V-notched beam technique and ultrashort pulsed laser notching; and thermal behavior is analyzed by the laser flash method. Materials also have highly anisotropic coefficient of thermal expansion. These properties contribute to enhance their performance under the harsh operating conditions of SOFC, as thermal residual stresses could be reduced while significantly improving the system mechanical stability. Moreover, the heat transfer may be enhanced especially along the interface direction which would increase the system efficiency.  相似文献   
110.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号